Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends.

نویسندگان

  • Nadine Hoecker
  • Barbara Keller
  • Nils Muthreich
  • Didier Chollet
  • Patrick Descombes
  • Hans-Peter Piepho
  • Frank Hochholdinger
چکیده

The phenomenon of heterosis describes the increased agronomic performance of heterozygous F(1) plants compared to their homozygous parental inbred plants. Heterosis is manifested during the early stages of root development in maize. The goal of this study was to identify nonadditive gene expression in primary roots of maize hybrids compared to the average expression levels of their parental inbred lines. To achieve this goal a two-step strategy was used. First, a microarray preselection of nonadditively expressed candidate genes was performed. Subsequently, gene expression levels in a subset of genes were determined via high-throughput quantitative real-time (qRT)-PCR experiments. Initial microarray experiments identified 1941 distinct microarray features that displayed nonadditive gene expression in at least 1 of the 12 analyzed hybrids compared to the midparent value of their parental inbred lines. Most nonadditively expressed genes were expressed between the parental values (>89%). Comparison of these 1941 genes with nonadditively expressed genes identified in maize shoot apical meristems via the same experimental procedure in the same genotypes revealed significantly less overlap than expected by pure chance. This finding suggests organ-specific patterns of nonadditively expressed genes. qRT-PCR analyses of 64 of the 1941 genes in four different hybrids revealed conserved patterns of nonadditively expressed genes in different hybrids. Subsequently, 22 of the 64 genes that displayed nonadditive expression in all four hybrids were analyzed in 12 hybrids that were generated from four inbred lines. Among those genes a superoxide dismutase 2 was expressed significantly above the midparent value in all 12 hybrids and might thus play a protective role in heterosis-related antioxidative defense in the primary root of maize hybrids. The findings of this study are consistent with the hypothesis that both global expression trends and the consistent differential expression of specific genes contribute to the organ-specific manifestation of heterosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Distance Based on SSR Markers and Testcross Performance of Maize Inbred Lines

The identification of parental inbred lines to develop superior hybrids is a rather costly and time-consuming step in maize breeding. In some cases, pedigree information has been used to select diverse parental lines. In the case of Iranian maize inbred lines, this information is not fully available. In this study we investigated the genetic distance (GD) based on Simple sequence Repeats (SSR) ...

متن کامل

Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid.

Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differe...

متن کامل

Nonadditive expression and parent-of-origin effects identified by microarray and allele-specific expression profiling of maize endosperm.

Plant endosperm cells have a nuclear ratio of two maternal genomes to one paternal genome. This 2 to 1 dosage relationship provides a unique system for studying the additivity of gene expression levels in reciprocal hybrids. A combination of microarray profiling and allele-specific expression analysis was performed using RNA isolated from endosperm tissues of maize (Zea mays) inbred lines B73 a...

متن کامل

Title: Cis-transcriptional variation in maize inbred lines B73 and Mo17 lead to additive expression patterns in the F1 hybrid

Microarray analysis of gene expression patterns in immature ear, seedling and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differen...

متن کامل

Gene expression non-additivity in immature ears of a heterotic F1 maize hybrid

Non-additive gene regulation has been recently suggested as an important factor promoting phenotypic variation and plasticity. In order to obtain a description of gene expression status at an early stage of ear development in a maize (Zea mays L.) F1 hybrid as relative to its parental inbreds, we compared gene expression profiles in immature ears of elite inbred lines B73 and H99 to one of thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 179 3  شماره 

صفحات  -

تاریخ انتشار 2008